
1.  Introduction
On interannual to decadal time-scales, atmospheric CO2 growth rates exhibit pronounced anomalies driven 
by varying strengths of the land and ocean carbon sinks; these anomalies are linked to climate variability on 
decadal and interannual time scales (Bacastow, 1976; Friedlingstein et al., 2019; Keeling et al., 1976; Land-
schützer et al., 2019; Peters et al., 2017; Spring et al., 2020). Variability in ocean carbon uptake is associated 

Abstract Inter-annual to decadal variability in the strength of the land and ocean carbon sinks 
impede accurate predictions of year-to-year atmospheric carbon dioxide (CO2) growth rate. Such 
information is crucial to verify the effectiveness of fossil fuel emissions reduction measures. Using a 
multi-model framework comprising prediction systems initialized by the observed state of the physical 
climate, we find a predictive skill for the global ocean carbon sink of up to 6 years for some models. 
Longer regional predictability horizons are found across single models. On land, a predictive skill of up to 
2 years is primarily maintained in the tropics and extra-tropics enabled by the initialization of the physical 
climate. We further show that anomalies of atmospheric CO2 growth rate inferred from natural variations 
of the land and ocean carbon sinks are predictable at lead time of 2 years and the skill is limited by the 
land carbon sink predictability horizon.

Plain Language Summary Variations of the natural land and ocean carbon sinks in response 
to climate variability strongly regulate year-to-year variations in the growth rate of atmospheric carbon 
dioxide (CO2). Information on the near-term evolution of the carbon sinks and CO2 in the atmosphere 
is necessary to understand where the anthropogenic carbon would go in response to emission reduction 
efforts addressing global warming mitigation. Predictions of this near-term evolution would thus assist 
policy-relevant analysis and carbon management activities. Here we use a set of prediction systems based 
on Earth system models to establish predictive skills of the ocean and land carbon sinks and to infer 
predictability of atmospheric CO2 growth rate. We show predictability horizons of up to 6 years for some 
models for the globally integrated ocean carbon sink, with even higher regional predictive skill. Variations 
of the land carbon sink are predictable up to 2 years and limit predictability of changes in atmospheric 
CO2 growth rate at lead time of 2 years. Our study thereby demonstrates an emerging capacity of the 
initialized simulations for predicting the global carbon cycle and the planet's breath maintained by 
variations of atmospheric CO2.
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•  Anomalies of atmospheric CO2 
growth rate are predictable up to 
2 years and are limited by the land 
carbon sink predictability horizon
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with major carbon uptake regions such as the Southern Ocean and the North Atlantic (Hauck et al., 2020; 
Landschützer et al., 2019). Inter-annual variations of the land carbon sink are primarily driven by the terres-
trial biosphere response to El Niño Southern Oscillation (ENSO) (Jones et al., 2001; Kim et al., 2016; Rope-
lewski & Halpert, 1987; Zeng et al., 2005). Year-to-year variations of the air-land carbon flux are about one 
order of magnitude higher than variations in the air-sea CO2 fluxes (Doney et al., 2006). Hence, predicted El 
Niño variability has been used, in combination with an average CO2 growth rate due to anthropogenic CO2 
emissions, to give an estimate, from a simple linear regression, of the atmospheric CO2 growth at Mauna 
Loa for the subsequent year (Betts et al., 2016). Predicting changes in atmospheric CO2 growth rate beyond 
this horizon remains a major challenge. Yet, robust information on whether atmospheric CO2 is going to 
rise slower or faster in a given period than the average rate based on expected emissions, will be essential 
for the evaluation of mitigation efforts in real-time in the presence of internal climate variability in sup-
port of policy-relevant analysis for the UNFCCC global stocktakes (UNFCCC, 2015) and for the developing 
carbon monitoring programs (Pinty et al., 2017). Furthermore, initialized ESM-based reconstructions and 
predictions can facilitate evaluation of the global carbon budgets (Friedlingstein et  al.,  2020; Matthews 
et al., 2020) and offer the causal explanatory power that is essential for understanding and explaining CO2 
growth as a verification tool in the context of carbon management.

Recent initialized predictions of near-term future climate have proven successful (Marotzke et al., 2016; 
Smith et al., 2007) with predictive power of carbon sinks also emerging. Li et al. (2019) established a pre-
dictive skill of the globally aggregated air-sea CO2 fluxes of up to 2 years assessed against an observational 
product. Longer predictability of 4–7 years in regions like the North Atlantic and the Southern Ocean is 
suggested (Li et al., 2016; Lovenduski, Yeager, et al., 2019; Fransner et al., 2020). ESM-based initialized 
prediction systems also demonstrate predictability of other marine biogeochemical properties such as net 
primary production, export production, and seawater pH (Brady et al., 2020; Fransner et al., 2020; Krum-
hardt et al., 2020; Park et al., 2019; Séférian et al., 2014; Yeager et al., 2018). On the land side, a potential 
prediction skill of 2 years was established for terrestrial net ecosystem production (Lovenduski, Bonan, 
et al., 2019), but only of 9 months for tropical land-atmosphere carbon flux (Zeng et al., 2008). Perfect-model 
frameworks based on idealized simulations suggest analogous predictability horizons for the carbon sinks 
(Séférian et al., 2018; Spring & Ilyina, 2020). However, previous studies were either limited to internally 
consistent model environments of perfect models (Frölicher et  al.,  2020; Séférian et  al.,  2018; Spring & 
Ilyina, 2020) or single initialized models (Fransner et al., 2020; Li et al., 2019, 2016; Lovenduski, Yeager, 
et al., 2019; Krumhardt et al., 2020; Yeager et al., 2018). Furthermore, they did not address predictability of 
variations in atmospheric CO2 growth.

Here, we assess how well different ESM-based initialized prediction systems capture variations of the global 
land and ocean carbon sinks and their predictability. We make a step further and for the first time examine 
the resulting predictability of variations in the growth rate of atmospheric CO2 that is driven by the response 
of carbon sinks to climate variability. As predictions of carbon sink evolution still remain a cutting-edge 
activity of only a few modeling groups, a common protocol is not yet available (Merryfield et al., 2020). Our 
multi-model framework comprises ESM-based prediction systems that contributed to the Decadal Climate 
Prediction Project (DCPP; Boer et al. (2016)) within the Coupled Model Intercomparison Project Phase 6 
(CMIP6), as well as those which run with the CMIP5 forcing. This enables us to establish predictive skills 
in a larger number of models, whilst performance of CMIP5 and CMIP6 model versions with respect to 
different aspects of the carbon cycle has been addressed in recent studies (Arora et al., 2019; Kwiatkowski 
et al., 2020; Séférian et. al., 2020). Prediction systems follow somewhat different initialization techniques 
and data assimilation methods based on the “best effort” of the different modeling centers. This approach 
arises from the overall DCPP philosophy of not specifying single details of the implementation and design 
of the multi-model predictions and thereby encompass aspects of the inherent uncertainty of climate pre-
dictions (Boer et al., 2016).

2.  Materials and Methods
We use a multi-model framework comprising eight ESM-based prediction systems, including CanESM5 
(Swart et  al.,  2019), CESM-DPLE (Yeager et  al.,  2018), GFDL-ESM2 (Park et  al.,  2018), IPSL-CM6A-
LR (Boucher et  al.,  2020), MIROC-ES2L (Watanabe et  al.,  2020), MPI-ESM-LR (Giorgetta et  al.,  2013), 
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MPI-ESM1.2-HR (Mauritsen et al., 2019), and NorCPM1 (Counillon et al., 2016). Details of each prediction 
system are given in Supporting Information. Simulations with CanESM5, IPSL-CM6A-LR, MIROC-ES2L, 
MPI-ESM1.2-HR, and NorCPM1 contributed to CMIP6 DCPP following historical forcing until 2014 and 
climate change scenario SSP2-4.5. Simulations with CESM-DPLE, GFDL-ESM2, and MPI-ESM-LR were 
performed under CMIP5 historical forcing until the year 2005 and followed either RCP4.5 (GFDL-ESM2, 
MPI-ESM-LR) or RCP8.5 (CESM-DPLE) climate change scenario thereafter.

The ensemble size in single prediction systems ranges between at least 10 members for most of the models 
up to 40 for CESM-DPLE (Table S1), enabling us to demonstrate the added value of a larger ensemble. For 
NorCPM1, we merged the two decadal hindcast products with 10 members each, producing one ensemble 
of 20 members. In the MPI-ESM based systems, only the lower resolution MPI-ESM-LR included both the 
land and the ocean biogeochemistry components. MPI-ESM1.2-HR was configured with a higher resolution 
in the atmosphere and ocean, but did not integrate the land biogeochemistry component.

In all models the carbon cycle components are only indirectly initialized with the data assimilative physics. 
Hence, we assess observed variability in carbon sinks captured through initialization of prediction systems 
by the observed state of the physical climate. All simulations ran with prescribed evolution of atmospheric 
CO2 concentrations and land use change.

We present three types of simulations. Reconstruction simulations include observed signals of climate vari-
ability introduced by the assimilation of observed and reanalysis products over a hindcast period. Uninitial-
ized simulations are based on continuous historical simulations following CMIP6 or CMIP5 forcing (not the 
observed signals), i.e. the model physics evolves independently and the resulting climate variability does not 
necessarily match the observed one. Initialized simulations are retrospective prediction simulations that 
start from a respective reconstruction simulations and develop internal climate variability that may be out 
of phase with observed climate variability. We compare the initialized simulations against the uninitialized 
ones to assess predictive skill that is established due to initialization. This predictive skill is characterized 
by the anomaly correlation coefficients (ACC; see supporting section 2 for details) between the model sim-
ulations and different reference data products. The anomalies are calculated by removing the climatological 
mean for the reconstruction and uninitialized simulations, and for the initialized simulations with addi-
tionally respect to the lead time. Note that we present the improved predictive skill due to initialization 
based on the comparison of ACC in the initialized predictions relative to that in the uninitialized simu-
lations. We use a bootstrapping resample method to quantify the significance of the improved predictive 
skill (Li et al., 2019). The predictive skill is defined with the lead time of years, until when the ACC in the 
initialized simulations is significantly larger than that in the uninitialized consecutively. The spatial map of 
predictive skill and the corresponding significance is generated by the central evaluation system MurCSS, 
which is a commonly used evaluation tool in decadal predictions (Illing et al., 2014). The focus time period 
of this study is from 1982 to 2013, when the global carbon cycle experienced large internanual to decadal 
variations. The time series are all linearly detrended to emphasize the predictability in interannual to decad-
al variability. The global time series are integrated based on the original model grid. For the spatial pattern 
of ACC calculation, the variables are conservatively interpolated into 5°.

For land carbon uptake, direct observational estimates capturing the regional and global temporal vari-
ability are not available, hence we use the Global Carbon Budget 2019 (GCB; Friedlingstein et al., 2019) 
carbon sinks estimate as a benchmark. Undergoing annual updates, GCB offers a comprehensive and tem-
porally consistent time-series of stand-alone land and ocean carbon cycle model simulations forced with 
observed climate data or climate reanalysis and additional observational products (atmospheric CO2, land 
cover change, etc.). We use a model mean from all available GCB models. GCB simulations are based on 
the stand-alone ocean and land models forced with a prescribed climate evolution from various reanalysis 
products, in contrast to the ESM-based prediction systems which dynamically compute the climate and use 
assimilated climate physics. Yet, to elaborate on the data independence of our predictability assessment, we 
estimate the predictive skill also with respect to the reconstruction simulations themselves to provide an 
evidence of the potential predictive skill. For ocean carbon uptake, we additionally use the Self-Organiz-
ing Map-Feed-Forward Network (SOM-FFN; Landschützer et al., 2015) observationally based product. In 
addition, the HadISST data (Rayner et al., 2003) is used to compare with model simulations of sea surface 
temperature and to calculate the ENSO index.
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3.  Variations of Ocean and Land Carbon Sinks in Initialized Simulations
First we examine the ability of reconstructions and initialized predictions to simulate observed interannual 
variations in carbon sinks. Both reconstructions and initialized predictions at lead time of 2 years appro-
priately capture multi-year variations of the anomalous air-sea flux of CO2 represented in the GCB and 
data-based SOM-FFN estimates (Figure 1 left). The uninitialized simulations mostly capture only ocean 
carbon sink increases in response to rising carbon emissions and thus follow a smoother temporal evolu-
tion. Indeed, Li and Ilyina  (2018) demonstrate that a single uninitialized model realization insufficient-
ly capture the response of the carbon cycle to internal variability. Furthermore, reconstructions suggest 
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Figure 1.  Time series of the global anomalous CO2 flux relative to the climatological mean in each modeling system into the ocean (left; a-c) and land (right; 
d-f) from reconstruction (top; a, d), uninitialized simulation, (middle; b, e) and initialized retrospective prediction (bottom; c, f) simulations at lead time of 
2 years. The long-term linear trends are removed for all the time-series. Left panels include available observation-based estimates from SOM-FFN. Numbers on 
the legends show the correlations relative to GCB and correlations relative to SOM-FFN data based estimates of the CO2 flux into the ocean (shown in brackets). 
Outputs for air-land CO2 fluxes from the reconstruction simulation were not available from IPSL-CM6A-LR and CESM-DPLE. SOM-FFN, Self-Organizing Map-
Feed-Forward Network.

(a)

(b)

(c)

(d)

(e)
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stronger multi-year variations in the ocean carbon sink and outperform the uninitialized simulations in 
GFDL-ESM2, MIROC-ES2L, MPI-ESM1.2-HR, and in NorCPM1 (only in comparison to SOM-FFN data). 
Lower correlations of reconstruction simulations as opposed to the uninitialized ones in CanESM5, IPSL-
CM6A-LR, and MPI-ESM-LR can be related to two aspects of the design of our analysis. First, the assim-
ilation techniques may not be optimally calibrated to represent ocean biogeochemistry in reconstruction 
(Li et al., 2019; Park et al., 2018). Second, GCB and SOM-FFN estimates chosen as the reference here are 
prone to their own uncertainties. GCB estimates are essentially an average of various stand-alone hindcast 
model simulations. The neural network approach of SOM-FFN is limited by spatial and temporal gaps in 
observations. While the different model outputs show a large spread in air-sea CO2 flux, they overall fall 
within the range of the SOCOM data products (Rödenbeck et al., 2015). The weakening ocean carbon sink 
captured in the SOM-FFN data product in the 1990s is revealed by the stronger negative trends in the re-
construction and initialized simulations versus the uninitialized ones, which are more pronounced in some 
predictions systems (in MPI-ESM-LR, MPI-ESM-HR, MIROC-ES2L, and partially in GFDL-ESM2). Other 
models (CanESM5, CESM-DPLE, NorCPM1, IPSL-CM6A-LR) capture a lower amplitude of the weakened 
ocean carbon sink, more consistent with the GCB estimate. Starting from the beginning of the 21st century, 
reconstruction simulations show an enhancement of the ocean carbon uptake with a stronger increase in 
the ocean carbon sink at the beginning of the 21st century as compared to the uninitialized ones (with an 
ensemble mean decadal trend from 2000 to 2009 of 0.06 Pg C year−2 in the reconstruction simulations vs. 
that of 0.04 Pg C year−2 in the uninitialized simulations). This decadal shift in evolution of the ocean carbon 
sink at the onset of the 21st century is attributable to climate modulated variability and is consistent with 
the SOM-FFN data estimate (Landschützer et al., 2015).

The fewer land carbon reconstruction simulations available to us all outperform the uninitialized simula-
tions in capturing the major year-to-year variations as indicated by higher correlations with GCB (Figure 1 
right). This correlation skill with the GCB estimates is maintained at lead year 2. Unsurprisingly, uninitial-
ized simulations do not capture the timing of air-land CO2 flux variations. Response to the warm and cold 
episodes of ENSO, the major driver of year-to-year variability of the air-land carbon fluxes, is clearly mani-
fested in the GCB estimates and reconstructions (Figure S1). It is notable that air-land CO2 flux in CanESM5 
has the highest correlation with GCB in reconstruction simulation, supported by the highest of all models 
correlation in the uninitialized simulation (Figure 1d). For NorCPM1 and MPI-ESM-LR assimilation data 
helps to establish correlation in reconstruction simulations. While there has been some progress in global 
models over the past decades (Bellenger et al., 2014), representing ENSO still remains a major challenge. 
Yet, a substantial improvement in the reconstruction simulations with respect to air-land CO2 flux, gives 
us confidence that initialized prediction systems capture the important processes that link the land carbon 
cycle to ENSO. The reconstruction simulations produce a distinct weakening of the land carbon uptake in 
response to major El Niño events, followed by a strong increase in the land carbon sink during La Niña 
events. These variations are not captured in the uninitialized simulations as they are not in phase with the 
observed climate variability.

4.  Predictability of Carbon Sinks and Atmospheric CO2 Growth Rate
We next examine effects of the global land ocean carbon sink variations on the inferred variability and 
predictability of atmospheric CO2 growth rate (Figure 2). Note that all prediction systems available to us 
are forced with prescribed evolution of atmospheric concentrations of CO2 (rather than with prescribed 
emissions of CO2) and so the atmospheric compartments of those models do not respond to land or ocean 
CO2 fluxes. Here, the detrended sum of the global land and ocean carbon fluxes serves as a diagnostic of var-
iations in the temporal evolution of the atmospheric CO2 growth driven by climate modulated variability of 
carbon sinks. These variations of a few PgC in the reconstruction simulations generally follow the evolution 
inferred from the GCB estimate (Figure 2a).

We find predictability of variations in atmospheric CO2 growth at lead times of 2 years in most models, as 
indicated by higher correlations with GCB of the initialized simulations in comparison to the uninitialized 
ones (Figure 2b and 2c). Given the higher amplitude of interannual air-land CO2 flux variability, atmospher-
ic carbon growth rate anomalies predominantly follow the land carbon sink evolution, and the ocean carbon 
sink acts to dampen the land modulated interannual variations of atmospheric CO2 (Doney et al., 2006; Lee 
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et al., 1998). Indeed, the improved correlation skill of air-land CO2 fluxes 
with the GCB estimates is maintained at lead year 2 and outperforms the 
uninitialized simulations in all models except MIROC-ES2L (Figure 1f).

We further assess predictability horizons of the global ocean and land 
carbon sinks, as well as of the diagnosed changes in atmospheric CO2 
growth represented by the lead years with improved predictive skill due 
to initialization (Figure 3). Predictive skill of the ocean carbon sink sig-
nificantly improves with initialization up to lead year 5 against the SOM-
FFN data product in MPI-ESM1.2-HR and up to lead year 6 in CESM-
DPLE and NorCPM1, respectively (Figure  3a). The predictive skill of 
CESM-DPLE is higher than reported in a previous study (Lovenduski, 
Yeager, et al., 2019) mainly because we focus on a different time period 
and use the SOM-FFN observationally based estimates rather than recon-
struction here. A larger ensemble size of CESM-DPLE relative to the out-
puts from the other prediction systems maintains the predictive skill sig-
nificance. Considering fewer ensemble members degrades its predictive 
skill significance (as indicated by the p-value dependence on ensemble 
size; Figure S2). A previous study (Li & Ilyina, 2018) suggests that a large 
ensemble size is needed to capture decadal variations in the ocean carbon 
sink. Therefore, an increased ensemble prediction size could enhance the 
predictive skill of global carbon fluxes in other prediction systems, as well 
as in a multi-model ensemble.

Predictive skill due to initialization up to lead year 2 for land carbon sink 
verified against GCB estimates is found in CanESM5, IPSL-CM6A-LR, 
MPI-ESM, and NorCPM1 (Figure 3b). This skill, supported by higher co-
herence between GCB estimates and initialized simulations at lead time 
of 2 years in most models (Figure 1f), goes well beyond a seasonal skill 
attainable in previous studies. A slightly lower and insignificant skill was 
found for CESM-DPLE because of the initialization of atmosphere and 
land from a random ensemble member of CESM-LE (see Materials and 
Methods and Lovenduski, Bonan, et al. (2019)).

The atmospheric CO2 growth rate changes induced by land and ocean 
carbon sink variations show predictive skill to lead year 2 (Figure 3) in 
the same models which have significant 2 years predictive horizons for 
the land carbon sink (i.e. in CanESM5, IPSL-CM6A-LR, MPI-ESM, and 
NorCPM1). Given the longer predictive horizons of the ocean carbon 
sink (in the models which provided output from both the ocean and the 
land biogeochemistry components), our results indicate that predicta-
bility of the atmospheric CO2 growth in these models is limited by the 
land carbon sink predictability. Analogously, a previous study, based on a 
perfect model framework (Spring & Ilyina, 2020), demonstrates that the 
predictive skill of atmospheric CO2 concentration of 3 years is dampened 
by land.

5.  Spatial Patterns of Predictability Horizons of CO2 
Fluxes
The prediction systems use different initialization techniques and data 
assimilation methods, but do they establish robust spatial predictability 

horizons in the carbon cycle? To address this question we examine predictability horizons due to added val-
ue of initialization, represented by the lead years when correlations of the initialized simulations are larger 
than those in the uninitialized ones. Despite different pattern among models, we find rather consistent CO2 
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Figure 2.  Time series of the anomalous atmospheric carbon growth 
rate due to natural variations of the ocean and land carbon sinks, 
represented by the reverse sign of the detrended land and ocean carbon 
sinks from reconstruction (a), uninitialized simulation, (b) and initialized 
retrospective prediction (c) simulations at lead time of 2 years. Numbers 
on the legends show the correlations relative to GCB. Outputs for air-land 
CO2 fluxes from the reconstruction simulation were not available from 
IPSL-CM6A-LR and CESM-DPLE, preventing the computation of the 
anomalous atmospheric carbon growth rates in these systems. GCB, Global 
Carbon Budget.

(a)

(b)

(c)
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flux predictability horizons established due to initialization in the different prediction systems in the hot-
spots of ocean carbon uptake in the Southern Ocean, North Atlantic, and North Pacific (Figure 4).

In these ocean regions acting as carbon uptake hotspots, the improved skill is retained for up to 9–10 years, 
thereby going beyond the predictability horizons of the physical climate variables, e.g. SST (Li et al., 2016; 
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Figure 3.  Predictive skill of the detrended CO2 flux into the ocean (a), CO2 flux into the land (b), and variations in the inferred atmospheric CO2 growth (c). 
Predictive skill is quantified as anomaly correlation coefficients of the model simulations with the SOM-FFN observation-based product for the air-sea CO2 
fluxes (a), and with GCB2019 for the air-land CO2 flux and anomalous atmospheric CO2 due to carbon sinks. Significantly improved predictive skill at 95% level 
for initialized over uninitialized simulations are marked with filled dots, p-values given in Table S2. Hist represents the uninitialized simulations. Note that 
MIROC-ES2L hindcasts start earliest from year 1980, so from lead year 4 the time period is shorter than 1982–2013. GCB, Global Carbon Budget; SOM-FFN, 
Self-Organizing Map-Feed-Forward Network.

Figure 4.  Predictability horizon of the detrended CO2 flux into the ocean and the land in individual models (a-
h), represented by the lead years with improved predictive skill due to initialization, i.e., when correlations in the 
initialized simulations are larger than 0 and also larger than those in the uninitialized simulations. Skill is quantified 
with anomaly correlation coefficient for the period 1982–2013. Predictive skill of the air-sea CO2 flux gained due to 
initialization is assessed against SOM-FFN, whereas for the air-land CO2 flux it is assessed against GCB. Crosses show 
significance at 95% level for the first 2 years. Note that MIROC-ES2L hindcasts start earliest from year 1980, so from 
lead year 4 the time period is shorter than 1982–2013. GCB, Global Carbon Budget; SOM-FFN, Self-Organizing Map-
Feed-Forward Network.
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Séférian et al., 2014). We find regional improvements in air-sea CO2 flux predictability due to initialization 
(as indicated by the difference between the initialized and uninitialized simulations at lead year two across 
models shown in Figures S3 and S4). These improved regions differ across the models and when assessing 
them versus the GCB estimates or the SOM-FFN (Figure S3) and the reconstructions (Figure S4), highlight-
ing the importance of high-quality reference for skillful predictions of the ocean carbon sink. The emerging 
new observational products would provide future new opportunities for predictability studies focusing on 
the ocean and land biogeochemsitry (Capotondi et  al.,  2019; Wanninkhof et  al.,  2019). The air-sea CO2 
flux dynamics is regulated by the temporal gradient of surface ocean pCO2. Because of the relatively fast 
equilibration of CO2 between atmosphere and surface ocean in most areas, pCO2 tracks atmospheric CO2 
evolution. This feature is fairly well captured in ocean biogeochemical models (Roy et al., 2011). Further-
more, our previous findings (Li et al., 2019) suggest that temperature variations largely control shorter-term 
(<3 years) predictability of the ocean carbon sink, while longer-term (>3 years) predictability is associated 
with nonthermal drivers. Coherency in the air-sea CO2 flux in the different prediction systems may be driv-
en by the robust representation of SST variations in the initialized predictions considered here (Figure S5).

On the land side, statistically significant improvements due to initialization (in CanESM5, IPSL-CM6A-
LR, MPI-EMS-LR, and NorCPM1) are suggested in regions of the tropics (e.g. Amazon, West Africa) and 
extra-tropics (e.g. Middle East, US Great Plains, Eastern Russia). These prediction systems represent land 
carbon fluxes improved due to initialization at lead time of 2 years. Less pronounced predictive skill of land 
carbon fluxes is found in CESM-DPLE due to the initialization of atmosphere and land from a random en-
semble member; see Materials and Methods and Lovenduski, Bonan, et al. (2019)).

6.  Conclusions
One major requirement related to the goal of the Paris Agreement of “limiting warming to well below 2°C, 
and pursuing efforts to 1.5°C,” is to discern the pathways of anthropogenic carbon in the Earth system in 
order to verify the effectiveness of fossil fuel emissions reduction measures. A major scientific challenge in 
this context will be to predict the inter-annual and decadal variations of the natural carbon sinks and the 
related variations in the growth rate of atmospheric CO2, as well as their susceptibility to ongoing climate 
change. Thus, predictability of variations of the global carbon cycle is a crucial emerging topic requiring fast 
advance as it relates to the global stocktaking requirements of the Paris Agreement.

Here we provide a first multi-model assessment of carbon cycle predictions with the ESM-based prediction 
systems initialized by the observed state of the physical climate, which is an important step toward skillful 
near-term predictions of the evolution of the land and ocean carbon sinks and the resulting variations in 
atmospheric CO2 growth in response to climate variability and changes in anthropogenic carbon emissions. 
We find improved predictive skill due to initialization in both ocean and land carbon sinks. Predictive skill 
due to initialization for the global air-sea CO2 flux is up to 6 years for some models. There is indication of 
even higher regional skill in single models and regions. Representation of air-land CO2 flux improved due 
to initialization in all models considered in this study. We demonstrate predictive horizons of up to 2 years 
in four out of the six models considered in this study. As year-to-year variations in atmospheric CO2 are 
largely determined by variations of the land carbon sink, the predictability horizon of 2 years found for the 
atmospheric CO2 growth rate is maintained by predictability of air-land CO2 flux.

Ongoing challenges in predictions of the global carbon cycle include a lack of observationally based prod-
ucts suitable to initialize the biogeochemical components of the ESMs and to verify prediction skill, the 
unavailability of standardized multi-model simulations that include prognostic carbon cycle components, 
and the insufficient prediction ensemble size that impairs significance assessment. Despite these challeng-
es, our analysis provides clear indications that further advancement of the physical and biogeochemical 
components of prediction systems and larger ensembles could timely address some of these challenges as 
new prediction simulations and updated observational products become available. The capability of such 
prediction systems to represent and predict the impact of interannual variability on CO2 growth rates rep-
resents a major improvement in terms of detection and attribution. Our analysis thus demonstrates an 
emerging capacity of the initialized simulations for skillful predictions of the carbon cycle and thereby of 
the planet's breath. Thus, such multi-model initialized predictions would offer a powerful tool in support 
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of governmental and economical decisions related to carbon management, as well as to verification and 
efficiency assessments of near-term carbon emission reduction pathways.

Data Availability Statement
Primary data and scripts used in the analysis that may be useful in reproducing the authors’ work are 
archived by the Max Planck Institute for Meteorology and can be obtained via the institutional repository 
http://hdl.handle.net/21.11116/0000-0007-349E-D.
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